CropGS-Hub Report
 

Reference

rrBLUP (rrBLUP [R-Package])

Endelman,J.B. (2011) Ridge Regression and Other Kernels for Genomic Selection with R Package rrBLUP. Plant Genome, 4, 250–255.

GBLUP (sommer [R-Package])

Covarrubias-Pazaran,G. (2016) Genome-Assisted Prediction of Quantitative Traits Using the R Package sommer. PLoS ONE, 11, e0156744.

Bayes (hibayes [R-Package])

Yin,L., Zhang,H., Li,X., Zhao,S. and Liu,X. (2022) hibayes: An R Package to Fit Individual-Level, Summary-Level and Single-Step Bayesian Regression Models for Genomic Prediction and Genome-Wide Association Studies. bioRxiv, 10.1101/2022.02.12.480230.

LightGBM (lightgbm [Python-package])

Yan,J., Xu,Y., Cheng,Q., Jiang,S., Wang,Q., Xiao,Y., Ma,C., Yan,J. and Wang,X. (2021) LightGBM: accelerated genomically designed crop breeding through ensemble learning. Genome Biol, 22, 271.

Training Population

ID GSTP008
Species Rice
Sample type Inbred Line
Sample number 705
SNP number 7,048,490
Traits 18
Paper

Analysis of genetic architecture and favorable allele usage of agronomic traits in a large collection of Chinese rice accessions.
https://pubmed.ncbi.nlm.nih.gov/32303966/


User submitted samples

_static_gstool_task_TPP000210_demo_Rice_705Inbred

Sample Calling SNP ratio
Rice1 94.85%
Rice2 98.49%
Rice3 96.28%
Rice4 97.86%
Rice5 96.06%
Rice6 95.72%

Note:
* Calling SNP ratio: the ratio of the total number of SNPs in [ the sample mapped to the reference dataset ] / [ the total number of SNPs in the reference dataset ]


Plant Height (cm) -- Best Linear Unbiased Prediction

Models

ModelPrediction accuracyMSERMSE
rrBLUP 0.763 52.46 7.14
GBLUP 0.768 52.09 7.13
BayesCpi 0.768 50.79 7.08
BayesL 0.770 49.64 7.00
BayesR 0.766 51.25 7.11
LightGBM 0.756 52.65 7.26

Prediction

Sample rrBLUP GBLUP BayesCpi BayesL BayesR LightGBM
PredictionPred/Max PredictionPred/Max PredictionPred/Max PredictionPred/Max PredictionPred/Max PredictionPred/Max
Rice1 93.14 69.32% 91.89 68.38% 92.00 68.47% 93.21 69.36% 92.42 68.78% 97.99 72.92%
Rice2 91.39 68.01% 91.82 68.33% 90.86 67.62% 91.77 68.30% 91.29 67.94% 87.09 64.81%
Rice3 96.58 71.87% 96.53 71.84% 97.23 72.36% 95.37 70.98% 95.87 71.35% 95.63 71.17%
Rice4 91.49 68.09% 92.16 68.59% 91.26 67.92% 91.42 68.04% 89.52 66.62% 92.36 68.73%
Rice5 108.81 80.98% 109.98 81.85% 109.83 81.74% 110.29 82.08% 107.87 80.28% 106.07 78.93%
Rice6 99.33 73.92% 98.46 73.28% 100.62 74.88% 98.86 73.57% 99.29 73.89% 100.07 74.47%


LeadSNP

The lead SNPs for GWAS significant signals based on our CropGS-Hub GWAS database are also listed below for users who are interested in traditional marker-assisted selection (MAS)

SNPid Chromosome Position Ref Alt P value Genetic Effect (Alt - Ref)
Chr1_22261818 Chr1 22261818 T C 6.9007e-07 2.2805
Chr1_24388159 Chr1 24388159 T A 7.9088e-07 3.6184
Chr1_32879690 Chr1 32879690 G A 6.0629e-08 5.9446
Chr1_33071815 Chr1 33071815 T G 1.1346e-07 4.4474
Chr1_40399153 Chr1 40399153 G T 1.2742e-06 3.9945
Chr2_7378326 Chr2 7378326 T G 7.6800e-08 -4.1843
Chr2_29822260 Chr2 29822260 G C 5.3157e-08 4.4923
Chr4_19373249 Chr4 19373249 T C 2.6256e-07 3.4109
Chr6_10837867 Chr6 10837867 A C 1.4117e-06 2.8994
Chr6_14068241 Chr6 14068241 A G 6.6725e-07 -3.2908
Chr6_16023180 Chr6 16023180 C T 8.5371e-07 -3.1884
Chr6_24817517 Chr6 24817517 T C 7.9473e-07 4.0076
Chr7_10992926 Chr7 10992926 C A 1.0543e-06 -5.6017
Chr8_14483606 Chr8 14483606 T C 1.1864e-06 7.6625
Chr9_993867 Chr9 993867 A G 1.2481e-06 5.1024
Chr9_4307285 Chr9 4307285 C T 6.3062e-07 5.4491
Chr9_6905151 Chr9 6905151 T C 7.3720e-08 4.5672
Chr9_15967723 Chr9 15967723 T C 4.7518e-08 5.3430
Chr10_18175505 Chr10 18175505 A G 1.3933e-07 6.5712
Chr12_27253752 Chr12 27253752 C G 5.7311e-08 2.3405

Lead SNPs in this database have been idefined using PLINK. The parameters are set as follows:
--clump-p1 $cutt-off --clump-p2 0.05 --clump-r2 0.1 --clump-kb 1000